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1. Introduction 

*For a given function, the Lagrange interpolation 
is, in many cases, not satisfactory. It is known that 
there exists a continuous function whose Lagrange 
interpolation diverges everywhere. So, there is a 
need to introduce additional conditions either 
related to the properties of the function or 
considering interpolating also derivatives-related 
data; this kind of interpolation is called the Hermite 
interpolation and will be considered in section 3. If 
the function has, in particular, lack of derivative 
information, then we consider the derivatives equal 
to zeros; this kind of interpolation is called the 
Hermite-Fejér interpolation and will be considered 
in section 4. It is also known that when using the 
nodes of interpolation to be the roots of the 
orthogonal polynomials, then the convergence is 
faster and assured. The third-kind Chebyshev 
polynomials are introduced in section 2. For more 
on these topics, see (Szegö, 1959). The rate of 
convergence of the Hermite-Fejér interpolation on 
the roots of the third-kind Chebyshev polynomials is 
given in section 5. Conclusions are given in section 6. 

Throughout this paper, we define, for =
0,1, … ,2𝑛 − 1 , 

 

𝐸𝑟 (𝑛, 𝜃) =  {𝑘: 
𝑟𝜋

2𝑛+1
<  |𝜃 − 𝜃𝑘| ≤    

(𝑟+1)𝜋

2𝑛+1
}. 
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Also, let 𝑉𝑓[𝑎, 𝑏 ]    denote the total variation of the 

function 𝑓(𝑥) of bounded variation on the interval 
[𝑎, 𝑏]. 

2. Third-kind Chebyshev polynomials 

The Chebyshev polynomials of the third kind, 
 𝑉𝑛(𝑥), are defined to be the orthogonal polynomials 
over the interval [-1, 1] with respect to the weight 
function  

 
𝑤(𝑥) = (1 + 𝑥)1/2(1 − 𝑥)−1/2. 

 
𝑉𝑛(𝑥) is also defined by the trigonometric 

functions as follows: 
 

𝑉𝑛(𝑥) =
cos(𝑛+

1

2
)𝜃

cos(
𝜃

2
)

,   𝑥 =  cos 𝜃   

 
They satisfy the following orthogonality 

relations: 
 

∫ (1 + 𝑥)1/2(1 − 𝑥)−1/2
1

−1

𝑉𝑛(𝑥) 𝑉𝑚(𝑥) 𝑑𝑥

=  {
𝜋, 𝑛 = 𝑚

0,          𝑛 ≠ 𝑚            

 
They also satisfy the following recurrence 

relations: 
 

𝑉𝑛+1(𝑥) = 2 𝑥 𝑉𝑛(𝑥) −  𝑉𝑛−1(𝑥),   

 
where 
 
𝑉0(𝑥) = 1,   𝑉1(𝑥) = 2𝑥 − 1,   𝑛 ≥ 1. 

 
The first few terms can be calculated to be: 
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𝑉2(𝑥) = 4𝑥2 − 2𝑥 − 1,   𝑉3(𝑥) = 8 𝑥3 − 4𝑥2 − 4𝑥 + 1, … 

 
The roots of  𝑉𝑛(𝑥) are given by: 
 

𝑥𝑘 =   cos (
2k − 1

2n + 1
)  𝜋   , 𝑘 = 1,2, … , 𝑛.  

 
They are also a special case of the Jacobi 

polynomials and are related to them by the formula: 
 

 (
2𝑛

𝑛
)  𝑉𝑛(𝑥) =  22𝑛     𝑃𝑛

(−
1
2

,
1
2

)(𝑥)  , 

 

Where   𝑃𝑛
(−

1

2
,
1

2
)(𝑥)  is the Jacobi polynomial of 

degree n. 
They also satisfy the following Rodrigues’ type 

formula: 
 

𝑉𝑛(𝑥) =  
(−2)𝑛  𝑛!

(2𝑛)!
   (

1 − 𝑥

1 + 𝑥
)

1
2

    
𝑑𝑛

𝑑𝑥𝑛
  {(1 − 𝑥2)𝑛 (

1 + 𝑥

1 − 𝑥
)

1
2

  }. 

 
They also satisfy the following second order 

differential equation: 
 

(1 − 𝑥2) 𝑦′′  − (2𝑥 − 1) 𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0 .   

 
The roots of  𝑥𝑘 , 𝑘 = 1,2, … , 𝑛  of   𝑉𝑛(𝑥) are all 

distinct real and lie in the interior of the interval.  
For more on the Chebyshev polynomials of the third 
kind, see (Doha et al., 2015, and Doha and Abd-
Elhameed, 2014). 

3. Hermite interpolation 

Let 𝑥𝑘  , 𝑘 = 1,2, … , 𝑛  be nodes of interpolation 
from the interval[−1,1], and let a function 𝑓(𝑥)  be 
defined on [−1,1]. Let  𝑦𝑘  = 𝑓(𝑥𝑘 ) , 𝑘 = 1,2, … , 𝑛  
and 𝑦𝑘

′  , 𝑘 = 1,2, … , 𝑛    be given numbers. Our aim is 
to construct a polynomial of degree 2𝑛 − 1   that 
agrees with values of  𝑓(𝑥𝑘 )      and its derivatives 
agree with𝑦𝑘

′ , 𝑘 = 1,2, … , 𝑛  . It is known that the 
polynomial satisfying these conditions is the 
Hermite interpolation polynomial denoted by 
𝐻2𝑛−1  (𝑥) and satisfies the following conditions:  

 
𝐻2𝑛−1  (𝑥𝑘) = 𝑓(𝑥𝑘),   𝐻′

2𝑛−1  (𝑥𝑘) = 𝑦𝑘
′ , 𝑘 = 1,2, … , 𝑛. 

 
It is the unique polynomial of degree 2𝑛 − 1  that 

satisfies the conditions above. Suppose that there is 
another polynomial 𝑃2𝑛−1 (𝑥) of degree 2𝑛 − 1  that 
satisfies the conditions above, and then the 
polynomial 𝐷2𝑛−1  (𝑥)  = 𝐻2𝑛−1  (𝑥) −𝑃2𝑛−1  (𝑥) is of 
degree 2𝑛 − 1  at most that satisfies 𝐷2𝑛−1  (𝑥𝑘) =
0,   𝐷′

2𝑛−1  (𝑥𝑘) = 0, 𝑘 = 1,2, … , 𝑛. Thus 𝐷2𝑛−1  (𝑥) 
has roots of multiplicity 2 at each of the nodes 𝑥𝑘  ,
𝑘 = 1,2, … , 𝑛. Since 𝐷2𝑛−1  (𝑥) is a polynomial of 
degree 2𝑛 − 1  at most, thus, we must have 
𝐷2𝑛−1  (𝑥) = 0. Therefore, 𝐻2𝑛−1  (𝑥) is unique. 

The Hermite polynomial 𝐻2𝑛−1 (𝑥) is given 
explicitly by the formula: 

 

𝐻2𝑛−1  (𝑥) =  ∑ 𝑦𝑘

𝑛

𝑘=1

 ℎ𝑘 (𝑥) +  ∑ 𝑦𝑘
′

𝑛

𝑘=1

 ℎ̂𝑘 (𝑥), 

where  
 

ℎ𝑘 (𝑥) = (1 −
𝑤𝑛

′′ (𝑥𝑘)

𝑤𝑛
′ (𝑥𝑘)

 (𝑥 − 𝑥𝑘) )  𝑙𝑘
2(𝑥),   𝑘 = 1,2, … , 𝑛, 

ℎ̂𝑘 (𝑥) =  (𝑥 − 𝑥𝑘)  𝑙𝑘
2(𝑥),   𝑘 = 1,2, … , 𝑛, 

𝑤𝑛(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑛),   
 
And 𝑙𝑘(𝑥), 𝑘 = 1,2, … , 𝑛  are the Lagrange 

fundamental polynomials. The polynomials  ℎ𝑘 (𝑥) 

and ℎ̂𝑘 (𝑥),  each of degree 2𝑛 − 1,  are called the 
fundamental polynomials of the first and second 
kind of the Hermite interpolation corresponding to 
the set of nodes 𝑥𝑘, 𝑘 = 1,2, … , 𝑛. 

If the function 𝑓(𝑥) is merely continuous on the 
interval  [−1,1], Fejér investigated the case of setting 
𝐻′

2𝑛−1  (𝑥𝑘) = 𝑦𝑘
′ = 0, 𝑘 = 1,2, … , 𝑛. In this case, the 

polynomial 𝐻2𝑛−1  (𝑥) is called the step polynomial 
or the Hermite-Fejér interpolating polynomial which 
behaves more regularly than the Lagrange 
interpolating polynomials as 𝑛  becomes large. In the 
next section this polynomial is considered when the 
nodes of interpolation are the roots of the third-kind 
Chebyshev polynomials. 

4. Hermite-Fejér interpolation 

These roots are used with the Hermite-Fejér 
interpolation as nodes of interpolation. We require 
the polynomial to take on given values at these roots 
and also to fix the values of its derivative at these 
roots. Given a function 𝑓(𝑥)  on [−1,1], we want to 
find a polynomial of lowest possible degree that 
satisfies the following properties: 

 
𝐻2𝑛−1  (𝑥𝑘) = 𝑓(𝑥𝑘),   𝐻′

2𝑛−1  (𝑥𝑘) = 0,   𝑘 = 1,2, … , 𝑛  . 

 
The polynomial 𝐻2𝑛−1  (𝑥) is the Hermite-Fejér 

polynomial and is given by the following formula 
 

𝐻2𝑛−1  (𝑥) =  ∑ 𝑓(𝑥𝑘)

𝑛

𝑘=1

 ℎ𝑘 (𝑥), 

 
where 

   

ℎ𝑘 (𝑥) = (1 −
𝑉𝑛

′′ (𝑥𝑘)

𝑉𝑛
′ (𝑥𝑘)

 (𝑥 − 𝑥𝑘) )  𝑙𝑘
2(𝑥)  ,    

 
𝑙𝑘 (𝑥), 𝑘 = 1,2, … , 𝑛  are the Lagrange 

fundamental polynomials. Doing some 
simplifications, we get  

 
ℎ𝑘 (𝑥) = ((1 − 𝑥𝑥𝑘) +  (1 − 𝑥𝑘)(𝑥 −

𝑥𝑘)  )  (
 𝑉𝑛(𝑥)

(𝑥−𝑥𝑘) (𝑛+
1

2
)
)2 𝑐𝑘  ,    

 
where, see (Rababah, 2007), 

 

𝑥𝑘 = cos(
cos−1 𝑥𝑘

2
). 
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When the function 𝑓(𝑥)  is merely continuous 
on [−1,1], and the nodes of interpolation 𝑥𝑘, 𝑘 =
1,2, … , 𝑛 are the roots of the Chebyshev polynomial 
of third kind, then the Hermite-Fejér interpolation 
polynomial 𝐻2𝑛−1  (𝑥) converges uniformly to 𝑓(𝑥)  
over every interval[−1 + 𝜀, 1], see Bojanic and 
Cheng (1983), Al-Jarrah (1986), and Al-Jarrah and 
Rababah (1990). 

5. Rate of convergence 

In this section, we consider the Hermite-Fejér 
interpolation for functions of bounded variation on 
the roots of the Chebyshev polynomials of third kind 
 𝑉𝑛(𝑥). Let  

 
𝐸𝑛  (𝑓, 𝑥)  = 𝐻2𝑛−1  (𝑥) −  𝑓(𝑥). 

 
We estimate the rate of convergence of  

𝐻2𝑛−1  (𝑥) to 𝑓(𝑥)  at points of continuity of 𝑓(𝑥). Let 
𝑥 ∈ (−1,1),   then we have 

 

|𝐸𝑛  (𝑓, 𝑥)|  ≤     ∑|𝑓(𝑥𝑘) − 𝑓(𝑥)|

𝑛

𝑘=1

ℎ𝑘  (𝑥) 

 ≤     ∑ 𝑉𝑓[𝑥 − 𝑡𝑘 , 𝑥 + 𝑡𝑘  ]     

𝑛

𝑘=1

ℎ𝑘  (𝑥) 

 
where, 

 
𝑡𝑘 =  |𝑥 − 𝑥𝑘|    and  𝑥 =  cos 𝜃  , 0< 𝜃 <  𝜋    

 
and 

 

𝑥𝑘 =   cos  𝜃𝑘 ,   𝜃𝑘 = (
2k−1

2n+1
)  𝜋, 𝑘 = 1,2, … , 𝑛.  

 
Thus, we have 
 

|𝐸𝑛  (𝑓, 𝑥)|  ≤     ∑    ∑ 𝑉𝑓[𝑥 − 𝑡𝑘 , 𝑥 + 𝑡𝑘  ]     

𝑘∈𝐸𝑟 (𝑛,𝜃)

2𝑛−1

𝑟=0

ℎ𝑘  (𝑥) 

 
Since  𝑡𝑘 =  |𝑥 − 𝑥𝑘| =  |cos 𝜃 − cos  𝜃𝑘  | ≤

|𝜃 − 𝜃𝑘|  ≤  
𝜋 |𝑉𝑛(𝑥)|

2𝑛+1
 and 𝐸𝑟 (𝑛, 𝜃)    has at most two 

elements, we get 
 

  ∑ 𝑉𝑓[𝑥 − 𝑡𝑘 , 𝑥 + 𝑡𝑘  ]     

𝑘∈𝐸0 (𝑛,𝜃)

  ℎ𝑘  (𝑥)

≤ 2 𝑉𝑓 [𝑥 −
𝜋 |𝑉𝑛(𝑥)|

2𝑛 + 1
, 𝑥 +

𝜋 |𝑉𝑛(𝑥)|

2𝑛 + 1
 ]     

 

Since 𝑡𝑘 ≤  
𝜋 (𝑟+1)

2𝑛+1
   and  ℎ𝑘 (𝑥) ≤  

12  𝑉𝑛
2(𝑥)

𝑟2  , we 

have 
 

  ∑ 𝑉𝑓[𝑥 − 𝑡𝑘 , 𝑥 + 𝑡𝑘  ]    
𝑘∈𝐸𝑟 (𝑛,𝜃)

  ℎ𝑘  (𝑥)

≤
24  𝑉𝑛

2(𝑥)

𝑟2
 𝑉𝑓 [𝑥 −

𝜋 (𝑟 + 1)

2𝑛 + 1
, 𝑥

+
𝜋 (𝑟 + 1)

2𝑛 + 1
 ] .    

Consequently,  
 

|𝐸𝑛  (𝑓, 𝑥)|  ≤     2    𝑉𝑓 [𝑥 −
𝜋 |𝑉𝑛(𝑥)|

2𝑛 + 1
, 𝑥 +

𝜋 |𝑉𝑛(𝑥)|

2𝑛 + 1
 ] + 

24  𝑉𝑛
2(𝑥) ∑  

1

𝑟2
2𝑛−1
𝑟=1   𝑉𝑓 [𝑥 −

𝜋 (𝑟+1)

2𝑛+1
, 𝑥 +

𝜋 (𝑟+1)

2𝑛+1
 ]  .     

 
Let  𝑝(𝑡) = 𝑉𝑓[𝑥 − 𝑡 , 𝑥 + 𝑡  ] ,    then 

 

∑  
1

𝑟2

2𝑛−1

𝑟=1

  𝑉𝑓 [𝑥 −
𝜋 (𝑟 + 1)

2𝑛 + 1
, 𝑥 +

𝜋 (𝑟 + 1)

2𝑛 + 1
 ]    =  

∑  
1

(𝑟 − 1)2

2𝑛

𝑟=2

  𝑝 (
𝜋 𝑟

2𝑛 + 1
)  ≤ 4  ∑  

1

𝑟2

2𝑛

𝑟=2

  𝑝 (
𝜋 𝑟

2𝑛 + 1
) 

 
𝑝(𝑡)  is a non-decreasing function and thus  
 

∫
𝑝(𝑡)

𝑡2

𝜋 (𝑟+1)

2𝑛+1
𝜋 𝑟

2𝑛+1

 𝑑𝑡  ≥ 𝑝 (
𝜋 𝑟

2𝑛+1
) ∫

𝑑𝑡

𝑡2

𝜋 (𝑟+1)

2𝑛+1
𝜋 𝑟

2𝑛+1

   ≥ 𝑝(
𝜋 𝑟

2𝑛+1
)  

2𝑛+1

𝜋𝑟(𝑟+1)
 .     

 
This can be rewritten as follows 
 

1

𝑟2
 𝑝 (

𝜋 𝑟

2𝑛 + 1
)  ≤  

𝜋 

𝑛 
   ∫

𝑝(𝑡)

𝑡2

𝜋 (𝑟+1)
2𝑛+1

𝜋 𝑟
2𝑛+1

 𝑑𝑡 .      

 
Thus 
  

∑  2𝑛
𝑟=2

1

𝑟2
 𝑝 (

𝜋 𝑟

2𝑛+1
)  ≤  

𝜋 

𝑛 
   ∫

𝑝(𝑡)

𝑡2

𝜋
2𝜋

2𝑛+1

 𝑑𝑡 ≤   
1 

𝑛 
   ∫ 𝑝(

𝜋

𝑡
)

𝑛

1
 𝑑𝑡   .   

 

The function 𝑝 (
𝜋

𝑡
) is non-increasing and thus we 

have 
 

∫ 𝑝(
𝜋

𝑡
)

𝑛

1
 𝑑𝑡    ≤  ∑  𝑛

𝑘=1   𝑝 (
𝜋 

𝑘
) . 

 
Thus 
 

∑  
1

𝑟2

2𝑛

𝑟=2

  𝑝 (
𝜋 𝑟

2𝑛 + 1
)  ≤    

1 

𝑛 
 ∑  

𝑛

𝑘=1

  𝑝 (
𝜋 

𝑘
). 

 
This discussion leads to the following formula for 

the estimate of the rate of convergence in the 
following theorem. 
 
Theorem 1: Let  𝐸𝑛  (𝑓, 𝑥)  = 𝐻2𝑛−1  (𝑥) −  𝑓(𝑥) , 𝑥 ∈
(−1,1),   where 𝐻2𝑛−1  (𝑥) is the Hermite-Fejér 
interpolation to the function 𝑓(𝑥) of bounded 
variation on the roots of Chebyshev polynomials of 
third kind 𝑉𝑛  (𝑥) . At points of continuity 𝑥 ∈
(−1,1),   and for sufficiently large 𝑛,   we have 
 

|𝐸𝑛  (𝑓, 𝑥)|  ≤        
96𝑉𝑛

2(𝑥)

n
      ∑  𝑛

𝑘=1   𝑉𝑓 [𝑥 −
𝜋 

𝑘
, 𝑥 +

𝜋 

𝑘
 ]    +

  2    𝑉𝑓 [𝑥 −
𝜋 |𝑉𝑛(𝑥)|

2𝑛+1
, 𝑥 +

𝜋 |𝑉𝑛(𝑥)|

2𝑛+1
 ],  

 
where  𝑉𝑓[𝑎, 𝑏 ]         is the total variation of 𝑓(𝑥) on 

[𝑎, 𝑏]. 
To check the precision of the estimate, we 

consider the Hermite-Fejér interpolation for even 𝑛  
to the function 𝑓(𝑥) = 𝑥2  at 𝑥 = 0. 
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We know that the Chebyshev polynomials of 
third kind 𝑉𝑛  (𝑥) satisfy the following equalities at 
𝑥 = 0:   

 
𝑉2𝑛  (0) =  (−1)𝑛  , and  𝑉2𝑛+1  (0) =  (−1)𝑛+1 . 

 
Thus  
 

𝐸𝑛  (𝑥2, 0)  =   ∑
1−𝑥𝑘+𝑥𝑘

2

𝑥𝑘
2

𝑛
𝑘=1

  

 𝑉𝑛
2(0)

 (𝑛+
1

2
)2

 .    

 

Since
1−𝑥𝑘+𝑥𝑘

2

𝑥𝑘
2  ≥ 1, thus 

 

𝐸𝑛  (𝑥2, 0)  ≥   ∑
 1

 (𝑛+
1

2
)2

  ≥ 𝑛
𝑘=1

  

 1

 𝑛
 .    

 
Also, since the total variation 𝑉𝑓[0, 𝑏 ] =  𝑏2

    thus 

we get 
 

|𝐸𝑛  (𝑥2, 0)|  ≤  
96

n
      ∑  

𝑛

𝑘=1

  𝑉𝑓 [−
𝜋 

𝑘
,
𝜋 

𝑘
 ]    

+   2    𝑉𝑓 [−
𝜋 

2𝑛 + 1
,

𝜋 

2𝑛 + 1
 ] 

≤  
192

n
      ∑  

𝑛

𝑘=1

  𝑉𝑓 [0,
𝜋 

𝑘
 ]    +   4    𝑉𝑓 [0,

𝜋 

2𝑛 + 1
 ] 

 
thus, we get 

 

|𝐸𝑛  (𝑥2, 0)|  ≤  
192

n
 π2      ∑  𝑛

𝑘=1   
1 

𝑘2
+  

4𝜋 2

(2𝑛+1)2
   

 
We reach to the following theorem. 

 
Theorem 2: For𝐸𝑛  (𝑓, 𝑥)  = 𝐻2𝑛−1  (𝑥) −  𝑓(𝑥), 𝑥 ∈
(−1,1),   for 𝑓(𝑥) = 𝑥2, we have the following 
inequalities: 
 
1

n
 ≤ |𝐸𝑛  (𝑥2, 0)|  ≤  

c

n
  

 
for some positive constant c  greater than 1. This 
means that the precision of the estimate in Theorem 
1 cannot be improved asymptotically. 

6. Conclusions 

In this paper, we have considered the Hermite-
Fejér interpolation to functions of bounded variation 
on the roots of the third-kind Chebyshev 

polynomials as the nodes of interpolation.  An 
estimate for the rate of convergence at the points of 
continuity for functions of bounded variations is 
given in Theorem 1. It is also shown that the rate of 
convergence cannot be improved asymptotically in 
Theorem 2. 
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